

Taking it further . . .

How long did it take to deposit these rocks?

There are over 840m of Chatburn Limestone of which only about 40m can be seen here. Each metre of rock took *very roughly* ten thousand years to accumulate so it took about 400,000 years for the rocks visible in the complete quarry face to be made.

Folding

These rocks were folded at the end of the Carboniferous period by a plate moving from the SE. This created the Ribblesdale Fold Belt which was later eroded down to the level of the quarry. This now provides a window into one side of one of the folds - the Horrocksford Anticline or upfold.

Geological Time Line

	Z	PALAEOZOIC			MESOZOIC			CENOZOIC
Millions of vear		ambrian seo rdovician silurian silurian silurian ss	a Carboniferous	a Permian s	Triassic §	a Jurassic	f Cretaceous	a Tertiary a terminary
	PRE		Evolution of reptiles Evolution of coniferous trees	Evolution of land plants Coal formation	Evolution of	the dinosaurs	Evolution of flowering plants Extinction of flowering plants	Evolution of animals and birds Evolution of humans
			British Isles cross the Equator, exten- sive rain forests	British Isles north of Equator, hot desert conditions			British Isles still moving north - chalk rocks laid down in clear seas	

Why are there not many fossils? Dating the rocks

Anywhere on Earth, the number of organisms that can survive depends on how much food there is. It was probably quite scarce in the sea where these rocks were made. Also, there was a food chain so many organisms were eaten by other animals which in turn were eaten by others leaving little to see.

Geologists approach the age of rocks in two different ways. One is to arrange the layers in order of their age - older ones at the bottom and younger ones at the top. This is a *relative* age scale. They use fossils which are widespread and have evolved rapidly to determine the relative age of rocks. The best fossils for this in the Chatburn Limestone are corals and brachiopods. When the fossils found in rock beds many miles apart are identical, geologists can infer that both beds of rocks are the same age. The other way to date rocks is to use radiometric methods, like Carbon14 dating, to fix the *absolute* age. The Chatburn Limestone rocks at Cross Hill are among the earliest rocks of Carboniferous age in Britain and are 340 to 350M years old.

Lancashire, Manchester & N Merseyside

GeoLancashire